Поглощение кислорода и выделение углекислого газа

Поглощение углекислого газа и выделение кислорода растениями при фотосинтезе

С целью изучения состава атмосферного воздуха и его загрязнённости я провел следующую практическую работу.

В естественных условиях летом дерево средней величины за 24 часа выделяет столько кислорода, сколько необходимо для дыхания трех человек, а 1 га зеленых насаждений за 1 ч поглощает 8 л углекислого газа и выделяет в атмосферу количество кислорода, достаточное для поддержания жизнедеятельности 30 человек.

Опыт 1. Поглощение углекислого газа и выделение кислорода растениями при фотосинтезе

Цель: рассмотреть процессы поглощения углекислого газа растениями и выделения ими кислорода при фотосинтезе.

В литровую банку (лучше с притёртой пробкой) поместил 3-4 ветки комнатного растения герань (размером чуть меньше высоты банки) с большим количеством листьев. Банку с ветками заполнил водой, закрыл стеклом и опрокинул в кристаллизатор с водой. Стекло отвел в сторону, а в банку снизу подвел изогнутую стеклянную трубку. Через трубку заполнил банку на 2/3 выдыхаемым воздухом и на 1/3 углекислым газом, полученным действием кислоты на мел. Когда из банки была вытеснена почти вся вода (для растений следует оставить слой воды 5-10 мм), вынул трубку, снова закрыл банку под водой стеклом, вынул из воды, перевернул и поставил на стол.

С помощью зажжённой лучинки убедился, что в банке углекислый газ.

Банку закрыл притёртой пробкой и поставил на свет. Был недостаток солнечного освещения. Поэтому вместо солнечного освещения использовал электрическое. Для этого поместил растение на расстоянии 30 см от лампы.

Через 4 дня проверил наличие углекислого газа в банке с помощью зажжённой лучинки. Зажжённая лучинка ярко горела. Следовательно в банке нет углекислого газа, а находится кислород. Значит, углекислый газ поглощается в процессе фотосинтеза.

Опыт 2. Выделение кислорода растениями при фотосинтезе

В стакан с водой поместили водное растение элодею. Поставили стакан с растением на яркий свет и собирали выделяемый кислород, как показано на фотографии, методом вытеснения воздуха, т. к. кислород малорастворим в воде. Через 6 дней обнаружили кислород при помощи тлеющей лучинки. При внесении тлеющей лучинки в пробирку, она ярко загоралась, следовательно в пробирке находится кислород, который образовался в процессе фотосинтеза.

Вывод: на свету в растениях протекает процесс фотосинтеза, при котором они поглощают углекислый газ и выделяют кислород.

Экологическая обстановка в мире давно уже перестала радовать земные экосистемы. Множество заводов, без которых человечеству просто не обойтись, выбрасывают ежегодно в атмосферу около 10 миллиардов тон углекислого газа. Многие относятся к этому скептически, утверждая, что количество диоксида углерода не меняется в экосистеме Земли.

На деле, проблема не столько в превышении количества CO2, сколько в нарушении обмена веществ в экосистеме Земли. До начала промышленной деятельности человека углекислый газ, при взаимодействии с водой выпадал в осадок в виде карбонатов, потом переходил в почву, откуда служил для многих растений и водорослей удобрениями. Но это процесс, растянутый на десятки и сотни лет. Человечество же использует запасы миллионов лет в сокращенные сроки, перерабатывая твердые формы углерода в виде нефти и угля. При сжигании этих ископаемых в механизмах и на заводах происходит выброс диоксида углерода в воздух.

Единственный выход это воспользоваться другим механизмом и размножить флору. Фотосинтез — это естественный механизм, предусмотренный природой для переработки CO2. Сегодня эта система нужна, как никогда ранее. Производство диоксида углерода растет и соизмеримо выбросам должно расти количество лесов, джунглей, парков и искусственных насаждений. Растение поглощает углекислый газ и выделяет кислород.

Дневное дыхание растений

Дневное дыхание связано с двумя процессами: непосредственно дыханием и фотосинтезом. Процесс дыхания, как и у человека, связан с окислением органических соединений и выделением диоксида углерода, воды и энергии. Вместо человеческих легких выступает вся поверхность растения. Химическая формула, описывающая реакции в процессе дыхания растений:

Любое дерево способно дышать всей поверхностью, даже поверхностью плодов. Но наиболее активно процесс дыхания происходит через устья листа, откуда и попадает по межклеточному пространству большая часть необходимых газов.

Если речь идет о дневном времени суток, то дыхание не столь заметно, как ночью. Поскольку работа растения направлена большей частью на постоянное запасание энергии в виде органических соединений (глюкозы). Попадающий в листья газ, при содействии воды и энергии солнечного света в хлоропластах превращается в глюкозу, которую организм запасает для дальнейшего использования. Собственно дыхание и является этим дальнейшим использованием.

Читайте также:  Вода с лимоном и имбирем польза

Запасенная глюкоза, с помощью воды и кислорода разлагается на молекулы аденозинтрифосфорной кислоты (АТФ), углекислый газ и водород. АТФ – это твердая энергия. Биологический аккумулятор клеток, который обеспечивает энергетическими запасами все живое на планете. Позднее эти запасы будут использованы в жизнедеятельности каждой молекулы организма.

Кажется, что образуется замкнутый круг: фотосинтез происходит с образованием глюкозы и кислорода, но что толку, если потом в результате дыхания растений выделяется диоксид углерода и АТФ. А энергию растения расходуют лично на себя, ничего не оставляя другим. Но весь вопрос в количестве. Далеко не весь кислород, который образуется во время фотосинтеза, поглощается организмом во время дыхания. Растения производят в разы больше, чем поглощают. Может этим они и отличаются от человека. А все энергетические запасы растений рано или поздно переходят в запасы животных или человека. Так растения отдают все свои накопления ради существования экосистемы Земли.

В среднем 1 гектар лесов ежегодно выделяет 4 тонны кислорода и потребляет 5 тонн углекислого газа. Человек в день выдыхает до 1 килограмма диоксида углерода, в год — 365 кг. Следовательно, 1 гектар леса поглощает углекислоту, которую выдыхают 13 человек.

С увеличением процента содержания углекислого газа в атмосфере теоретически можно ускорить рост зеленых насаждений на Земле. Многие исследования показывают, что в условиях теплиц СО2 можно использовать как «воздушное удобрение», ведь иногда при дыхании кислородом растениями поглощается еще и углекислый газ. Но так происходит это только в условиях экспериментов. На открытых пространствах начавшийся рост активизирует насекомых, которые не позволяют лесам и джунглям разрастись. А культурные растения от таких добавок превращаются в легкую добычу для вредителей. Поэтому, чтобы не говорили скептики, нарушение обмена углеродом это плохо.

Ночное дыхание растений

Процесс дыхания растений мало чем отличается от дыхания животных и человека. Есть и ночное дыхание. Это явление было открыто Отто Варбургом в начале XX века. Ночью света нет, а значит нет и энергии для фотосинтеза. Растения перестают вырабатывать O2, но не могут перестать дышать. Кислород поглощается, а углекислый газ все так же продолжает выделяться.

Белки, жиры и углеводы, запасенные в процессе жизнедеятельности днем, благодаря циклу Кресса превращаются в углекислый газ, молекулы АТФ и водород.

АТФ расходуются на дальнейшие нужды, углекислый газ уходит в атмосферу по устьицам, а вот водород окисляется до воды. Растение не может позволить себе сбрасывать водород в атмосферу, поскольку легко может погибнуть от этого, поэтому происходит частичный выброс паров воды. Большая часть организма растения – вода. Она нужна во всех процессах, включая дневное и ночное дыхание. Окисленный водород будет использован вновь в следующих реакциях.

Именно из-за ночного дыхания не рекомендуется ставить цветы в спальнях. Это понижает содержание кислорода в комнате. Что никак не скажется на цветах, но будет чувствительно для человека.

Для дыхания растений существует пороговое значение содержания кислорода. При увеличении содержания О2 в воздухе до 5-8 процентов – интенсивность дыхания у растений скачкообразно растет. Но после это рост практически прекращается. Сейчас кислорода в воздухе около 21 процента. А значит, растениям еще долго не нужно будет о нем беспокоиться.

В природе есть еще одно интересное явление, названное САМ — фотосинтезом. Это явление характерно для пустынных цветов и растений. В вечной погоне за сохранением водных ресурсов, эти растения приспособились к проведению фотосинтеза в ночь.

Водоросли и CO2

Под водорослями понимают все растения, находящиеся под водой и не имеющие корня. Интенсивнее всего, из водорослей, поглощает углекислоту одноклеточные водоросли — фитопланктон. В основном все водоросли дышат растворенным в воде кислородом, за исключением нескольких видов, осуществляющих бескислородный фотосинтез. Те в качестве акцептора электронов при дыхании используют элементную серу.

Фитопланктон обитает в верхних слоях воды, поскольку ему требуется большое количество солнечной энергии для фотосинтеза. При наличии в воде растворенного углекислого газа фитопланктон осуществляет фотосинтезирующий процесс, побочным продуктом которого является кислород. Большим отличием этих водорослей от наземных растений является количество производимого кислорода. За один цикл фотосинтеза фитопланктон производит кислорода в 3-4 раза больше собственного веса. Неудивительно, что при таких показателях 70 процентов атмосферного кислорода произведено в воде.

Читайте также:  Когда делать прививку яблони весной

Фотосинтез

О фотосинтезе уже шла речь в этой статье. Стоит рассмотреть его более подробно. Как уже говорилось ранее, фотосинтез происходит в хлоропластах. За две фазы происходит процесс образования новой молекулы глюкозы, которая после используется в химических процессах растения.

Во время световой фазы используется энергия солнца. Под ее действием вода отдает электрон и распадается на положительно заряженные частицы водорода (Н) и радикалы гидроксида (ОН). После этого оставшиеся частицы ОН образуют воду и кислород, который сразу же удаляется в атмосферу. В хлоропласте остались электроны и положительно заряженные частицы водорода. Эти частицы накапливаются на различных сторонах мембраны тилакоида (одной из частей хлоропластов), из-за разницы концентраций протоны из большей концентрации стремятся проникнуть через мембрану к протонам с меньшей концентрацией. Когда разность потенциалов между ними достигнет 200 миллиВольт, произойдет разряд и молекула АТФ зарядится, а никотинамидадениндинуклеотидфосфат (сокращенно НАДФ) восстановится до НАДФ*Н. Эти два компонента и будут необходимы в темновой фазе фотосинтеза.

В теневой фазе АТФ является аккумулятором, а НАДФ курьером, который доставляет в другую часть хлоропласта протон Н. К тому же растению нужен будет СО2, который послужит основой для будущей молекулы глюкозы. В итоге химических реакций из молекул СО2 и водорода, с помощью энергии из АТФ получается глюкоза С6Н12О6, которая и является первым питательным веществом во всех пищевых цепочках Земли.

Заключение

Хлоропласты — устройство для сбора солнечной энергии возрастом 3 миллиарда лет. Эта микроскопическая солнечная батарея дает жизнь лесам, полям, планктону морей, а также животным включая нас с вами.

Биосфера, работающая на солнечной энергии, собирает и обрабатывает в 6 раз больше энергии, чем вся человеческая цивилизация. Сейчас мы понимаем, как фотосинтез работает на химическом уровне. Мы способны повторить этот процесс лабораторных условиях, но у нас это получается хуже, чем у растений. Неудивительно, ведь природа занималась этим миллиарды лет, а мы только что начали. Но если бы мы смогли раскрыть тайны фотосинтеза, все источники энергии, от которых мы зависим сегодня — уголь, нефть, природный газ ушли в прошлое. Фотосинтез — идеальная экологическая энергия, она не загрязняет воздух, не даёт выбросов углерода. Искусственный фотосинтез в достаточно больших масштабах позволил бы снизить парниковый эффект, ведущий к опасному изменению климата …

В процессе выживания организмов в различной среде важную роль играет энергия, выделяющаяся в организме [4]. Поток энергии в организме может быть описан величинами потребления пищи, потребления кислорода, количеством выделенного углекислого газа и другими показателями. Но вся энергия в организме в виде усвоенных питательных веществ пропорциональна количеству поглощенного кислорода. Эта фундаментальная закономерность, отражающая приложение первого начала термодинамики к организму животного, лежит в основе большинства методов изучения энергетического обмена. Потребление кислорода организмом является одной из главных функций живой природы. Изучение потребления кислорода в замкнутом пространстве может моделировать ситуации нахождения человека в космическом корабле, подводной лодке, ситуации после землетрясений при разрушении и изоляции человека, при производственных работах в емкостях и другие ситуации. Большее потребление кислорода организмом при его адаптации к внешней среде приводит к выработке большего количества энергии и улучшает выживание [4, 5]. В различные периоды жизни на Земле количество кислорода в атмосфере значительно менялось. Поэтому можно предположить, что в организме остались работоспособными системы, которые включаются при низких концентрациях кислорода и переключают работу организма на особый, пока нам неизвестный режим работы. В настоящее время достаточно подробно изучен вопрос потребления кислорода в покое и при физической нагрузке. Но сравнительно мало данных о динамике потребления кислорода в заведомо замкнутом пространстве при его потреблении организмом до предельного уровня. Нет комплексных полных данных потребления кислорода в замкнутом пространстве камеры до его полного потребления организмом при заполнении камеры 20 % кислородом и 80 % аргоном [1, 2]. Эти данные могут иметь практическое значение, так как заполнение пространства менее 14 % кислородом (остальное аргон) предотвращает горение в этой среде. Поэтому исследование потребления кислорода в инертных газах [1, 2, 3] может дать характеристику тех пределов выживаемости организма, которые могут встретиться в результате аварий, катастроф.

Материалы и методы исследования

В опытах использовались лабораторные животные: кролики, крысы. Животные помещались в изолированную газонепроницаемую камеру, которая имела штуцер входа газа и выхода. Камера заполнялась воздухом (у крыс 1850 мл, у кроликов 56 литров), воздух прокачивался воздушным насосом через датчики кислорода и углекислого газа и опять возвращался в камеру. Таким образом, концентрация кислорода постепенно уменьшалась, а углекислого газа увеличивалась. С датчиков газа напряжение преобразования подавалось на аналого-цифровой преобразователь (АЦП), проводилось измерение 100 величин и средняя величина показателей за 1 минуту вводилась и регистрировалась на компьютере. С помощью программного обеспечения (программы написаны были нами) определялось количество потребленного кислорода в (мл) и выделившегося углекислого газа в одну минуту на килограмм веса и другие параметры. Когда компьютер показывал, что потребление кислорода в течение 2–5 минут не возрастает, раздавался сигнал тревоги, в камеру закачивался воздух и опыт прекращался. В результате, мы полностью исключили потерю животных в опыте. Для исследования брали газовые смеси – воздух (азота 80 %, кислорода 20 %), кислородно-аргоновую смесь (кислорода 20 %, аргона 80 %). Животные по одному помещались в камеру, и проводился опыт. Количество кроликов и крыс составило по 15 животных в опытной и контрольной группах. После опытов все данные статистически обрабатывались и на графиках были представлены средние величины показателей по всем животным.

Читайте также:  Рецепт куриных сердечек с грибами и сливками

Результаты исследования и их обсуждение

Потребление кислорода животными в замкнутом пространстве ведет к уменьшению его концентрации пропорционально времени пребывания в камере животного. Одновременно происходит выделение углекислого газа и повышение его концентрации. В наших опытах, представленных в данной работе, углекислый газ не поглощался. Поэтому результаты опытов поглощения кислорода при возрастающей концентрации углекислого газа носят как фундаментальный характер изучения влияния разных концентраций газов на организм, так и являются важными при моделировании аварий с полной изоляцией человека.

Рис. 1. Средние величины (n = 15) поглощения кислорода и выделения углекислого газа у крысы в замкнутой камере (1850 мл) в среде воздуха (азот 80 %, кислород 20 %) за 50 минут опыта. По оси абсцисс время опыта в минутах. По оси ординат концентрация кислорода и углекислого газа в процентах в камере, где находится животное

Анализ результатов опытов определения потребления кислорода у крыс при заполнении изолированной камеры воздухом показал, что в первые 1–10 минут опыта потребление кислорода (рис. 1) составило 25,7 мл/кг/мин. При дальнейшем продолжении опыта на 25–50 мин потребление кислорода уменьшилось в два раза и составило 13,8 мл/кг/мин. Средняя величина поглощения кислорода в воздухе за 50 минут составила 16,7 мл/кг/мин.

Выделение углекислого газа у крыс в камере было пропорционально поглощению кислорода, но величина выделения углекислого газа была меньше величины поглощения кислорода.

Соотношение максимального поглощения кислорода в начале опыта и в конце опыта составило 25,7/12,88 = 1,99 раза (уменьшилось потребление кислорода у крыс в конце опыта в воздухе в 2 раза).

Анализ результатов опытов определения потребления кислорода у крыс при заполнении изолированной камеры аргоном показал, что в первые 1–10 минут опыта потребление кислорода (рис. 2) составило 21,04 мл/кг/мин. При дальнейшем продолжении опыта на 50–60 минуте потребление кислорода уменьшилось в три раза и составило 7 мл/кг/мин. Средняя величина поглощения кислорода за 60 минут (весь опыт) в аргоне составила 14,82 мл/кг/мин.

Поглощение кислорода за первые 10 минут опыта было 21,06 мл/кг/мин (начало 1–10 минут). Поглощение кислорода в аргоне у крыс за 60 минут опыта было 14,82 мл/кг/мин (1–60 мин). Поглощение кислорода в конце опыта с аргоном на 50–60 минуте было 7 мл/кг/мин (50–60 мин). Соотношение максимального поглощения кислорода в аргоне в начале опыта и в конце опыта составило 21/7 = 3 раза (в конце опыта уменьшилось потребление кислорода у крыс с аргоном в 3 раза по сравнению с началом опыта).

Результаты опытов с кроликами

Анализ результатов опытов определения потребления кислорода у кроликов при заполнении изолированной камеры воздухом показал, что в первые 30 минут опыта потребление кислорода (рис. 3) составило 12,61 мл/кг/мин. При дальнейшем продолжении опыта на 70–120 мин потребление кислорода уменьшилось и составило 9,1 мл/кг/мин.

Поглощение кислорода и выделение углекислого газа, мл/кг/мин, при измерении в разных интервалах опыта в воздухе у крыс