Содержание
Можно выделить прямое и опосредствованное влияние солнечной активности на растения. Типичным примером прямого влияния является фотосинтез. Без солнечного света он невозможен. Солнечный свет является одним из наиболее важных для жизни растений экологических показателей [7]. Он поглощается хлорофиллом и используется при построении первичного органического вещества. Лучистая энергия Солнца действует на клетки растения непосредственно.
Примером опосредствованного влияния является зависимость толщины годичного прироста деревьев от солнечной активности. В данном случае, по мнению учёных, космические факторы изменяют атмосферную циркуляцию (количество осадков и температуру воздуха), что приводит к изменению климата, а эти изменения, в свою очередь, влияют на развитие растений. Мы же видим только конечный результат — толщину годичного кольца данного дерева.
Этой проблемой подробно занимался А. Дуглас. Он стремился выбирать долгоживущие деревья, что дало ему возможность проследить влияние солнечной активности на рост деревьев в течение веков и даже тысячелетий. Первое, на что обратил внимание Дуглас, было то обстоятельство, что на срезах секвойи, имеющих тысячи годичных колец (3200 лет), обычно чередуются годичные кольца быстрого роста (большой толщины) и годичные кольца медленного роста (тонких) См. [5]. Исследования показали, что при минимальной активности Солнца растения развиваются быстрее. Надо иметь в виду, что развитие растения зависит и от типа данного леса, и от температуры во время вегетационного периода, и от увлажнённости леса. Однако, несмотря на все это, во всех изменениях годичных колец различных деревьев выявляется определенная их зависимость от солнечной активности.
Делись добром 😉
Похожие главы из других работ:
2. Влияние Солнца на Землю
4. Активность солнца и здоровье людей
Александр Леонидович Чижевский внес большой вклад в изучение влияния Солнца на возникновение эпидемических заболеваний. Результаты этих его исследований имеют особую ценность: ведь он работал с материалами тех эпох.
Глава I. Влияние Солнца на животных
Ещё в XIX веке учёными был проведён ряд исследований. Выяснилось, что ультрафиолетовые лучи Солнца последовательно сперва возбуждают, а затем угнетают клетки животных, что объясняется раздражением плазмы клеток.
§ 1. Зависимость роста эпидемий от Солнца
Как Солнце может быть связано с ростом заболеваемости? Изучая, например, ход холерных эпидемий по эпидемиологическим исследованиям и сопоставляя даты последовательного развития холеры с датами в периодической деятельности Солнца.
§ 2. Взаимосвязь между активностью Солнца, нервной системой человека и смертностью
Каково влияние Солнца на нервную систему человека? Как его активность сказывается на увеличении смертности? В работах неоднократно упомянутого нами Чижевского было доказано, что возмущения на Солнце (извержения, взрывы.
2. Роль Солнца в жизни Земли. Солнечный ветер и солнечная радиация
Солнце играет очень большую роль в жизни нашей планеты. Оно источник света и тепла на Земле. Испарение воды, выпадение осадков, течение рек, бури, грозы, засуши и все другие явления, обусловливающие климат и погоду на Земле.
3. Магнитные бури и их влияние на биосферу. Идеи Чижевского о пульсации Вселенной и Солнца
Магнитные бури возникают под действием потоков солнечного ветра, интенсивность которых зависит от состояния нашего светила. Солнце, как и Земля, обладает магнитным полем.
Влияние основных тяжелых металлов на растения
КОБАЛЬТ В биосфере кобальт преимущественно рассеивается, однако на участках, где есть растения — концентраторы кобальта, образуются кобальтовые месторождения.
1. КАК ОПРЕДЕЛИТЬ ВОЗРАСТЫ СОЛНЦА, ЗВЕЗД, ВСЕЛЕННОЙ? КАКОВ ДИАПАЗОН ВРЕМЕННЫХ ИНТЕРВАЛОВ ВО ВСЕЛЕННОЙ
В большинстве современных учебников, энциклопедий и справочников возраст Солнца оценивается в 4,5-5 миллиардов лет. Еще столько же ему отводится, чтобы «догореть». В первой половине XX века развитие ядерной физики достигло такого уровня.
ГМ – РАСТЕНИЯ В РОССИИ
На российском рынке ГМ-продукция появилась в 90-е годы. В настоящее время в России разрешенными являются 17 линий ГМ-культур (7 линий кукурузы, 3 линии сои, 3 линии картофеля, 2 линии риса, 2 линии свеклы) и 5 видов микроорганизмов.
3. Жизнь. Биологическая картина мира. Биосфера и цивилизация. А.Л. Чижевский о влиянии Солнца на природные и общественные процессы
То, что Солнце — основа возникновения и существования жизни на нашей планете, а также причина большинства протекающих на ней физических и химических процессов,– тривиальная истина, привычная с незапамятных времен.
Циклы деятельности Солнца
Решающие циклы в биосфере: 24 часа – время оборота Земли вокруг Солнца. 28 часов – время оборота Солнца вокруг своей оси. 1 год – время оборота Земли вокруг Солнца. 11,1 лет – средний период солнечной активности. 22 года – полный магнитный цикл.
1.3. Влияние Солнца на экологические процессы Земли.
Из всех элементов электромагнитного излучения для биосфе-ры наиболее опасно ультрафиолетовое излучение, поскольку, воздействуя на живое на Земле, подвергает его опасности унич-тожения. Биологическое действие ультрафиолетового излучения.
1.2 Состав солнца
Из чего состоит Солнце? Об этом рассказывает нам спектр солнечных лучей. Солнечные лучи идут к нам от очень горячей фотосферы и проходят через газы солнечной атмосферы, из которых каждый химический элемент поглощает определенные лучи.
1.4 Каковы источники энергии Солнца
Откуда берется энергия Солнца, не остывает ли оно и долго ли еще будет снабжать Землю теплом и светом? Делалось много разных предположений об источниках солнечной энергии. Но только новые открытия физики позволили это объяснить. Зная.
Вопрос о связи урожаев сельскохозяйственных культур с солнечной активностью имеет длинную историю. Известно, что еще в III в. до н. э. Катон Старший, римский писатель, заметил, что цены на рожь зависели от солнечной активности (от «помрачения Солнца»). При высокой солнечной активности урожаи ржи были лучше и поэтому цены на рожь снижались. Во времена Галилея эту проблему обсуждал Батиста Балиани. Он высказал предположение о влиянии солнечных пятен на Землю.
Казалось естественным, что потемневшие участки поверхности Солнца (пятна) излучают меньше солнечной энергии. Поэтому чем больше пятен, тем заметнее охлаждение Земли, которое оказывает влияние на растительный мир. Откуда было знать в то время, что пятна являются источником солнечной энергии, которая переносится к Земле невидимыми потоками заряженных частиц.
Английский астроном Вильям Гершель также интересовался, как количество пятен на Солнце может влиять на развитие растений. Что такое влияние имеется, он не сомневался. Это было в XVIII в., когда существование 11-летнего цикла солнечной активности еще не было установлено. Но было достоверно известно, что количество пятен на Солнце меняется от года к году. Чтобы внести ясность в данный вопрос, Гершель сопоставил собранные им данные о солнечных пятнах почти за двести лет с рыночными ценами на пшеницу. Связь оказалась в принципе очень простой и четкой — цены были тем меньше, чем выше была солнечная активность. При высокой солнечной активности климат становится более влажным, поэтому урожаи пшеницы лучше, а рыночные цены на нее ниже.
Впоследствии этим вопросом занимались многие исследователи. Было установлено, что развитие растений (а значит, и урожаи) тесно связано с уровнем солнечной активности. Конечно, это справедливо не только для ржи и пшеницы. Так, качество вина и урожаи винограда связаны определенным образом с уровнем солнечной активности. Более детальные исследования показали, что связь между солнечной активностью и ростом растений зависит и от местных особенностей климата, как это мы уже видели в случае деревьев и кустарника. Причем солнечная активность влияет на рост растений не только через изменение количества осадков и температуры, но и другим, более окольным путем, — через болезни сельскохозяйственных культур. Если солнечная активность усиливает вредоносность болезней растений, то их рост и урожайность будут от этого страдать.
В разных регионах это влияние солнечной активности на вредоносность болезней растений (например, бурой ржавчины пшеницы) различно. Поэтому будет отличаться и конечный результат, то есть урожайность сельскохозяйственных культур в разных регионах. Но всегда неизменно она выявляет связь с солнечной активностью. Но в одних случаях эта связь положительная, а в других отрицательная. Это и затрудняло решение данного вопроса.
Влияние магнитного поля на растения
О том, что магнитное поле оказывает влияние на рост и формирование растений, можно убедиться очень просто. Все растения на Земле находятся в магнитном поле Земли. Можно убедиться, что растения, которые свободно развиваются, ориентируются в направлении южного магнитного полюса. Другими словами, корни растут преимущественно в этом направлении. Этот эффект зависимости роста растений (или их частей) от магнитного поля был назван магнитотропизмом растений (тропос — направление). Этот эффект у растений изучался очень подробно как в естественных условиях, когда растения развивались в магнитном поле Земли, так и в условиях, созданных искусственно, когда величина и направление магнитного поля, действующего на растения, изменялись. Во всех случаях растения не оставались безучастными к влиянию магнитного поля. Их реакция зависела от направления магнитного поля. В частности, от направления магнитного поля относительно зародышей семян зависят функционально-биохимические свойства растений, развившихся из семян. Так, если ориентировать корешки зародыша пшеницы в направлении южного магнитного полюса, то все растение (и корни и стебли) развивается более эффективно, нежели в случае ориентации корешков зародыша в направлении северного магнитного полюса.
Тип растения определяют и по тому, как развиваются во времени определенные процессы в растении, которые связаны с его функционированием, или, другими словами, по тому, какая ритмика характерна дня этих процессов. Например, лепестки могут располагаться так, что, переходя от одного лепестка к другому, мы будем двигаться по ходу часовой стрелки. Это растение является дисимметричным — «правым» (часовая стрелка движется вправо). Те растения, у которых лепестки расположены в обратном направлении, — являются «левыми» (но, естественно, тоже дисимметричными). Имеется и много других признаков, по которым можно определить, к какому типу относится данное растение. Любопытно, что принадлежность данного растения к определенному типу не является вечной. По истечении определенного времени растения одного типа (например, левые) могут стать растениями другого типа (правами). Представляет интерес не только сам этот факт, но и особенно то, что время такого перерождения равно примерно 11 годам, то есть соответствует длительности цикла солнечной активности! Это не случайно. 11-летний цикл солнечной активности сопровождается таким же по продолжительности циклом магнитной активности, а изменение магнитного поля (в этом проявляется магнитная активность) оказывает влияние на развитие и структуру растений. Влияние магнитного поля (его изменчивости и направления) изучалось очень глубоко многими исследователями. В результате было доказано, что смена дисимметрии цветков у растений действительно следует в строгом соответствии с изменением магнитного поля Земли. Выполненные исследования достоверно доказали, что магнитное поле, вообще, и магнитное поле Земли, в частности, несомненно, влияет на дисимметрию растений. Развитие растения в магнитном поле зависит не только от ориентации магнитного поля относительно самого растения (или его зародыша), но от типа дисимметрии растения. Например, было показано, что если семена растений, относящиеся к левому типу, ориентировать кончиком зародышевого корешка к южному магнитному полюсу Земли, то из них произрастут растения, которые растут более быстро, имеют более высокую ферментативную активность. Содержание хлорофилла в этих растениях больше. В результате всех этих факторов урожайность ориентированных указанным образом растений выше примерно на 13—52%. Чтобы получить такой же качественный эффект для правых растений, их зародыши необходимо ориентировать в противоположном направлении, то есть к северному магнитному полюсу. Разные физиологические процессы в растениях разных типов характеризуются разной зависимостью (как качественно, так и количественно) от магнитного поля.
Связь урожайности и солнечной активности
По данным об урожайности зерновых хлебов в России с 1801 по 1915г. следует, что неурожайные годы чаще совпадают с минимумами солнечной активности. Наибольшие неурожаи приходились на 1810, 1823, 1833 и 1853 гг., которые в точности соответствовали минимумам солнечной активности.
Связь между урожайностью и солнечной активностью осуществляется прежде всего через атмосферную циркуляцию, от которой зависит число осадков и температура. Но, как мы уже видели, связь между солнечной активностью и атмосферной циркуляцией меняет свой характер (знак) примерно каждые 40 лет. В один сорокалетний период увеличение солнечной активности приводит к увеличению температуры воздуха, а в другие, соседние с этими, к уменьшению. Изменяется от периода к периоду и характер осадков. Поэтому естественно, что в разные 40-летние периоды и связь между урожайностью и солнечной активностью будет различной. Это необходимо учитывать как при анализе данных, так и при составлении прогнозов. Здесь очень важно учитывать региональные особенности, поскольку в разных регионах влияние атмосферной циркуляции по-разному влияет на количество осадков, температуру, гидрологический режим и т. д. Так, было показано, что на Европейской территории России большие неурожаи (связанные с сильными засухами) имели место в те годы, когда магнитная активность росла (восходящая ветвь кривой магнитной активности) или же при максимальной магнитной активности.
Анализ данных о засухах за это же время в Казахстане показал, что там сильные засухи имели место только в те периоды, когда солнечная (магнитная) активность уменьшалась, то есть на ветви спада магнитной (и солнечной) активности, а также при спокойном магнитном поле Земли, во время минимальной солнечной активности. Практически все 100% засух в Казахстане за период 1888—1955 гг. приходятся на указанные выше периоды. При максимальной солнечной активности засух в Казахстане в указанный период не было, тогда как на минимумы солнечной активности их приходилось почти половина (43%).
По данным об урожаях в Оренбургской области за 100 лет (1864—1960 гг.) четко прослеживается циклическое изменение урожайности пшеницы. Но эти колебания не следуют в точности изменениям солнечной активности. В начале указанного периода максимальная урожайность приходилась на время минимальной солнечной активности. После этого произошел сдвиг по фазе: наибольшие урожаи пшеницы имели место при максимальной солнечной активности. Такая зависимость наблюдалась в продолжение 30 лет, после чего фазовые отношения изменились. Но цикличность урожаев пшеницы осталась четко выраженной.
Эти результаты очень поучительны. Они свидетельствуют о том. что зависимость урожайности от солнечной активности не следует понимать упрощенно и ждать, что раз увеличилась солнечная активность, то увеличится и урожайность. Чтобы действительно понять, а тем более предсказать связь урожайности с солнечной активностью, надо обязательно учесть все факторы, которые оказывают влияние на рост растений и в свою очередь зависят от солнечной активности. Надо учитывать влияние различных циклов солнечной активности, их сочетания. И само собой разумеется, надо проводить весь этот анализ с учетом местных, региональных, особенностей. Эти особенности проявляются как в атмосферной циркуляции, так и в атмосферных процессах вообще.
Можно выделить прямое и опосредствованное влияние солнечной активности на растения. Типичным примером прямого влияния является фотосинтез. Без солнечного света он невозможен. Солнечный свет является одним из наиболее важных для жизни растений экологических показателей. Он поглощается хлорофиллом и используется при построении первичного органического вещества. Лучистая энергия Солнца действует на клетки растения непосредственно.
Примером опосредствованного влияния является зависимость толщины годичного прироста деревьев от солнечной активности. В данном случае, по мнению учёных, космические факторы изменяют атмосферную циркуляцию (количество осадков и температуру воздуха), что приводит к изменению климата, а эти изменения, в свою очередь, влияют на развитие растений. Мы же видим только конечный результат — толщину годичного кольца данного дерева.
Этой проблемой подробно занимался А. Дуглас. Он стремился выбирать долгоживущие деревья, что дало ему возможность проследить влияние солнечной активности на рост деревьев в течение веков и даже тысячелетий. Первое, на что обратил внимание Дуглас, было то обстоятельство, что на срезах секвойи, имеющих тысячи годичных колец (3200 лет), обычно чередуются годичные кольца быстрого роста (большой толщины) и годичные кольца медленного роста (тонких). Исследования показали, что при минимальной активности Солнца растения развиваются быстрее. Надо иметь в виду, что развитие растения зависит и от типа данного леса, и от температуры во время вегетационного периода, и от увлажнённости леса. Однако, несмотря на все это, во всех изменениях годичных колец различных деревьев выявляется определенная их зависимость от солнечной активности.
Следует еще указать на один фактор, оказывающий влияние на рост растений. Это деятельность микроорганизмов в почве. Их роль в жизни растений огромна, так как они задерживают азот в почве. Азот вносится в почву вместе с удобрениями. Здесь он превращается в молекулярную форму, после чего денитрифицирующие бактерии выводят его быстро из игры и в дальнейшем в развитии растений он не участвует. Было показано, что жизнь (в частности численность) микроорганизмов (аммонифицирующих бактерий) зависит от солнечной активности. Раньше считалось, что микроорганизмы прекращают свою работу с окончанием вегетационного периода. Но оказалось, что это не так. Микроорганизмы в почве способны успешно функционировать даже в сильно промерзшей почве. Причем эффективность их деятельности (размножения) зависит от солнечной активности. Образно говоря, солнечная активность сама удобряет почву. В зависимости от солнечной активности (не от температуры и влажности почвы!) изменяется численность различных микроорганизмов, таких как аммонифицирующие и нитрифицирующие бактерии, аэробные целлюлозоразлагающие бактерии и водоросли, которые используют в своей деятельности нитраты (а не только аммиак почвы).
Так, с ростом солнечной активности с начала 1966 г. численность нитрифицирующих бактерий увеличилась примерно в 10 раз и в последующие годы оставалась очень высокой. Одновременно (одномоментно!) изменилась численность и других указанных выше бактерий. Роль этих процессов в жизни растений можно понять на основании таких данных. Азот вносится в почву с удобрениями, но выносится азот из почвы больше, чем вносится, — получается большой дефицит азота в почве. Ликвидировать его и помогают микроорганизмы, которые фиксируют азот. Поэтому их называют азотфиксирующими организмами. Без учета деятельности этих микроорганизмов невозможно понять процессы, протекающие в почве. Численность микроорганизмов в окультуренной почве огромна. Примерно 5—6 тонн микробных клеток содержится на площади всего в 1 га. Речь идет о пахотном слое.
Влияние солнечной активности на численность микроорганизмов в почве является в определенной мере прямым, непосредственным. Это надо понимать следующим образом. Когда солнечная энергия, переносимая к Земле, вызывает изменения в погодном слое атмосферы, которые в свою очередь окажут влияние на рост растений, то говорят о косвенном, опосредствованном влиянии солнечной активности на жизнь растений. Надо иметь в виду, что сама солнечная энергия по пути от Солнца к погодному слою атмосферы Земли много раз меняет свою форму. Когда солнечное излучение непосредственно влияет на растения, то такое влияние является несомненно прямым.
При подготовке статьи использовалась литература: Дуглас А. Жизнь, вселенная и всё остальное / А. Дуглас. – СПб.: Эксмо, 2002. – 324 с., Ю. В. Мизун, Ю. Г. Мизун «Тайны будущего» М.: Вече, 2000
Яндекс Диск- создание альбома, загрузка фото
Убедительная просьба – не грузите фото на Яндекс, ссылки на фото в сообщениях через сутки пропадают!
Солнечный свет — один из наиболее важных для жизни растений экологических показателей. Он поглощается хлорофиллом и используется при построении первичного органического вещества.
Основными характеристиками света являются его спектральный состав, интенсивность, суточная и сезонная динамика.
По спектральному составу солнечный свет неоднороден. В него входят лучи, имеющие различную длину волны. Из всего спектра для жизни растений важна фотосинтетическая активная (380-710 нм) и физиологически активная радиация (300-800 нм).
Причем, наибольшее значение имеют красные (720-600 нм) и оранжевые лучи (620-595 нм). Именно они являются основными поставщиками энергии для фотосинтеза и влияют на процессы, связанные с изменением скорости развития растения (избыток красной и оранжевой составляющей спектра задерживает переход растения к цветению).
Синие и фиолетовые (490-380нм) лучи, кроме непосредственного участия в фотосинтезе, стимулируют образование белков и регулируют скорость развития растения. У растений, живущих в природе в условиях короткого дня, эти лучи ускоряют наступление периода цветения.
Ультрафиолетовые лучи с длиной волны 315-380 нм задерживают «вытягивание» растений и стимулируют синтез некоторых витаминов, а ультрафиолетовые лучи с длиной волны 280-315 нм повышают холодостойкость.
Лишь желтые (595-565 нм) и зеленые (565-490 нм) не играют особой роли в жизни растений.
Учет потребностей растений в определенном спектральном составе света необходим при правильном подборе источников искусственного освещения. В комнатных условиях в качестве таковых наиболее удобно использовать люминесцентные лампы ЛБ и ЛДЦ.
Почти все комнатные растения светолюбивы, т.е. лучше развиваются при полном освещение, но различаются по теневыносливости. Принимая во внимание отношение растений к свету, их принято подразделять на три основные группы: светолюбивые, теневыносливые и тенеиндифферентные.
Как и все живые организмы, растения обладают способностью адаптироваться к изменяющимся условиям. Эта способность различна у разных видов. Есть растения, довольно легко приспосабливающиеся к достаточному или избыточному свету, но встречаются и такие, которые хорошо развиваются только при строго определенных параметрах освещенности. В результате адаптации растения к пониженной освещенности несколько меняется его облик. Листья становятся темно-зелеными и немного увеличиваются в размерах (линейные листья удлиняются и становятся уже), начинается вытягивание междоузлий стебля, который при этом теряет свою прочность. Затем их рост постепенно уменьшается, т.к. резко снижается производство продуктов фотосинтеза, идущих на посторенние тела растения. При недостатке света многие растения перестают цвести.
При избытке света хлорофилл частично разрушается, и цвет листьев становится желто-зеленым. На сильном свету рост растений замедляется, они получаются более приземистыми с короткими междоузлиями и широкими короткими листьями.
Появление бронзово-желтой окраски листьев указывает на значительный избыток света, который вреден растениям. Если срочно не принять соответствующие меры, может возникнуть ожог.
Важными характеристиками светового режима является суточная и сезонная динамика.
Длина светового дня меняется в течение года. В умеренных широтах самый короткий день равен 8 ч., а самый длинный — более 16 ч.
Расположение окон и количества света
В помещениях растения получают односторонний свет — из окон. Даже на одном окне условия освещенности неодинаковы. Правая сторона окна, обращенного на запад, получает больше света, чем левая.
На подвесной полке у верхней фрамуги освещение только боковое, а на подоконнике отчасти и верхнее.
Количество прямого солнечного света, попадающего в комнату, зависит от расположения окон. Больше всего солнечных лучей проникает в так называемые «фонари» с трехсторонним освещением, затем в угловые комнаты с окнами на восток и на юг или на запад.
Дольше всего солнце находиться на южных (открыты к солнцу в течение 6-9 часов и пропускают максимум солнечного света), затем на юго-восточных и юго-западных окнах; окна, обращенные на восток, освещаются солнцем с утра до полудня, западные — только во второй половине дня.
Окна, обращенные на север, пропускают ровный, почти неизменной интенсивности свет в течение всего дня.
В условиях нашей географической широты большую часть дня растения освещаются не прямым, а рассеянным солнечным светом.
Количество рассеянного солнечного, попадающего в комнату, определяется размерами части неба, видного через окно (или окна). Если окна выходят на большие открытые пространства (набережные, широкие улицы и т.д.), то в такие помещения попадает гораздо больше света, чем в те, через окна которых видны только стены соседних домов. Часть солнечного света, особенно если в комнате темные обои и мебель, поглощается.
В светлых комнатах с окнами, обращенными на юг, восток или запад, можно успешно выращивать любые комнатные растения.
Положение к источнику света
Многие растения очень чувствительны к перемене положения по отношению к источнику света (особенно зигокактус, герани, фуксии). Поэтому, после того как растению будет отведено в комнате постоянное место, следует избегать перестановок.
Цветы и травы тянутся к свету и поворачивают к нему свои листья, в результате в комнатах они принимают однобокую форму. Вечнозеленые декоративно-лиственные растения, если их постепенно поворачивать к свету, разрастаются равномерно во все стороны.
Для закладывания цветочных почек, цветения и созревания плодов большинству растений нужен солнечный свет, но есть и такие, которым необходима темнота.
По степени отношения к световому режиму выделяют растения длинного дня, которые могут расти, цвести, и плодоносит круглый год, темнота им совершенно не нужна. В средних широтах (гортензия, глоксиния, сенполия, кальцеолярия, цинерария т.д.) цветут с ранней весны, (т.е. с наступлением длинного дня и короткой ночи), до начала осени.
Растениям короткого дня (зигокактус, каланхое и др.), для того чтобы зацвести, необходим 8-10 часовой световой день.
Растения, не требовательные к длине дня, цветут как при длинном, так и при коротком световом дне (розы, бегония семперфлоренс, комнатный клен и др.)
Растения чередования длинных и коротких дней зацветают лишь после того, как короткие зимние дни сменяются длинными весенними дня (пеларгония крупноцветковая) или требуют обратного чередования, т.е. цветут только зимой (камелия, цикламен).
Теневыносливые растения
К теневыносливым видам отнесены растения, приспособленные к существованию в условиях слабой освещенности, где интенсивность освещения составляет 0,25-0,5% от полного дневного света. Это, в основном, выходцы из влажно-тропических областей.
Cupressus sempervirens var. sempervirens
Светолюбивые растения
К светолюбивым видам отнесены растения, произрастающие на открытых пространствах.
Индифферентные растения
Из теневыносливых видов к таким растениям принадлежат:
Cupressus sempervirens var. semscandens
Среди светлолюбивых в этом отношении следует отметить:
Иногда при оформлении интерьера правила эстетики требуют определенного размещения растений, которое совершенно не соответствует требованиям к освещенности. В этих случаях подбирают такие виды растений, которые более продолжительное время могут выдерживать отсутствие света, или же через какое-то время одни растения заменяют другими.
В зимнее время нужно особенно внимательно относиться к размещению растений. В теплых комнатах температура 20-30℃ способствует быстрому их росту, а отсутствие света препятствует этому. Таким образом, нарушается равновесие, в результате чего растения часто гибнут. Поэтому зимой все растения, даже теневыносливые, надо стараться размещать на самых светлых местах.
Весной с каждым днем поступает все больше света, однако прямые солнечные лучи могут обжечь растение, поэтому необходимо слегка притенить их (я притеняю их калькой, наклеенной на окно; свет есть, но не яркий). Многие светолюбивые растения можно все лето держать на балконе. Привыкать к обилию солнечного света они должны постепенно: нельзя комнатное растение сразу выставить на балкон на солнце — оно получит солнечный ожог!
Нарушения светового режима
Одна из наиболее распространенных причин медленного умирания достаточно неприхотливых комнатных растений — это недостаток света. Под недостатком света мы понимаем и недостаточную продолжительность светового дня, и недостаточную интенсивность освещения. Как уже упоминалось, свет — единственный доступный зеленым растениям источник энергии, обеспечивающий все функции их организма. Поэтому освещенность ниже видоспецифического порога неизбежно приводит к гибели растения. Естественно, что растение погибает не сразу. Сначала изменяется естественная окраска листьев — молодые листья вырастают более бледными и более мелкими, чем обычно, пестроокрашенные теряют яркость рисунка, пестрые листья становятся зелеными, нижние листья желтеют. Происходит уродливое вытягивание побегов из-за излишнего удлинения междоузлий, а цветение гораздо более скудное: и цветов образуется меньше, и размером они более мелкие. Потом растение прекращает свой рост, цветения не наступает вовсе, нижние листья желтеют, засыхают и опадают. И только после этого растение окончательно погибает. Наиболее чувствительны к дефициту освещения молодые растения.
Старые экземпляры с хорошо развитой корневой системой более устойчивы в условиях недостатка света, так как при низком уровне фотосинтеза могут какое-то время использовать запасы питательных веществ, накопленных в корнях. Но при постоянном дефиците освещения в течение нескольких месяцев и они неизбежно погибают.
К нарушениям светового режима относится и избыток света. Для многих растений попадание на листья прямых солнечных лучей в течение нескольких часов весной или летом также может привести к повреждениям или даже к гибели. Это относится, конечно, к тенелюбивым растениям — селагинеллам, папоротникам, марантам и др.
Нарушение светового режима не сводится только к избытку или недостатку света. Для некоторых видов растений важным фактором является и периодичность и длительность освещения. Растениям наших широт, как правило, требуется длинный световой день, по 12–16 часов. Тропические по происхождению растения привыкли к более короткому световому дню — им достаточно 12-часового освещения. Для таких растений, как, например, пуансеттии, длительность освещения является ключевым моментом для закладки бутонов и цветения: они зацветают только после 8 недель короткого светового дня, когда ночь длится 14 часов; но для этого растения следует накрывать плотным, не пропускающим свет пакетом.
Хронический дефицит света
Признаки того, что растению хронически не хватает света, могут быть различными, но в первую очередь страдают молодые, образующиеся в этих условиях побеги. Их листовые пластинки становятся бледновато окрашенными, междоузлия удлиняются, размер листовой пластинки уменьшается.
Для некоторых видов при недостаточной освещенности характерно появление ювенильных листьев. Так, у широко известной монстеры деликатесной в молодом возрасте образуются сердцевидные цельнокрайные неразрезанные листья, с годами появляются новые листья, все более крупные, которые приобретает все более причудливую форму. Сначала по краю пластинки появляются глубокие вырезы, а потом, когда листья станут еще более крупными, они украшаются замкнутыми отверстиями вдоль центральной жилки. При хронической нехватке света у монстеры появляются мелкие, простой формы, без отверстий листья, и она теряет всю свою декоративность.
Декоративно-лиственные растения, такие как маранты, зебрины, калатеи, не требующие для своего содержания прямого солнечного освещения, при недостатке света все же теряют большую часть своей привлекательности: их яркие пятна и полосы бледнеют и утрачивают контрастность. Насыщенность окраски колеусов также зависит от качества освещения: недостаток света приводит к тому, что даже у молодых растений стебель оголяется снизу, а листья не такие яркие, как при хорошем освещении. Потеря декоративной окраски листьев у пестролистных форм кротона, кордилины, драцены, эписции, ананаса, каладиума в большинстве случаев вызвана именно нехваткой света. При этом не обязательно пострадавшие растения сразу выставлять на прямые солнечные лучи — эта крайность тоже вредна. Как правило, таким растениям нужен в меру яркий рассеянный свет.
Необычайно декоративные листья гинуры, сеткреазии, ирезины, гемиграфиса при недостатке освещения теряют свою насыщенную пурпурно-фиолетовую окраску, бледнеют или совсем зеленеют. У пестролистных растений: плющей, бересклетов, пестролистных форм фикусов, бирючины, сциндаптуса, сингониума, гипоэстеса — бледнеют и вовсе исчезают их декоративные пятна и полоски. Выросшие при сильном недостатке света побеги могут оказаться просто зелеными.
Без достаточного освещения невозможно цветение многих комнатных растений: азалий, гардений, орхидей, олеандров, мимоз, бальзаминов, фуксий, хризантем, колокольчиков.
Слабое освещение является причиной скудного или позднего цветения комнатных растений. Так, если на пеларгонию хоть изредка в течение зимы попадает солнечный свет, то она зацветает намного раньше и цветет гораздо обильнее, чем растения, стоящие в глубине помещения или на северном окне.
Но больше всего страдают от хронического недостатка света кактусы, литопсы и другие суккулентные растения (агавы, молочаи, алоэ, толстянки, седумы). У них вытягиваются стебли, прекращается цветение, растения утрачивают свою декоративность, и в конце концов наступает гибель. Пустынные кактусы, литопсы, конофитумы, некоторые толстянковые нуждаются в очень хорошем освещении — жаркое солнце благотворно действует на их рост и цветение, и солнечное местоположение — необходимое условие их культуры. Для этих растений даже яркий рассеянный свет бывает недостаточен, нужно, чтобы на них попадало солнце. Но внимание! После долгой северной зимы жаркие весенние лучи высоко стоящего солнца первое время надо рассеивать незначительным притенением, иначе растения получат солнечные ожоги. Кроме того, известно, что растения, полученные из питомников, могут быть вообще не приучены к прямым солнечным лучам — если их сразу выставить на солнце, они получат сильнейшие ожоги. Их надо приучать к прямому солнцу очень постепенно.
Другие суккуленты хорошо растут на восточных окнах. Это относится к гастериям, алоэ, каланхоэ, хавортиям, очиткам, иидам с зелеными, не защищенными восковым налетом или волосяным покровам стеблями.
Небольшой кратковременный недостаток освещенности можно компенсировать, несколько снижая температуру воздуха в комнате. Существует правило: чем меньше освещены растения, тем меньше должна быть температура. Безусловно, снижать температуру в комнате можно лишь в разумных пределах, как правило, не ниже 14–12℃, в редких случаях — до 8℃.
Гораздо эффективнее переставить растения в более светлое место или устроить для них дополнительную подсветку. Потребность в освещении большинства комнатных растений составляет от 500 до 2000 люксов. С помощью специальных источников освещения, которые наиболее близко соответствуют дневному свету, даже в темных углах дома для растений можно создать вполне удовлетворительные условия для роста. Обыкновенные лампы накаливания для этих целей подходят плохо — в их спектре слишком много красных, оранжевых и инфракрасных лучей, ускоряющих вертикальный рост, поэтому под лампами накаливания растения вытягиваются. Перевес в сторону ультрафиолетовых лучей слишком сильно замедляет рост растений. Оптимальным является спектр дневного света, который простирается от ультрафиолетовых, через видимые, до инфракрасных лучей. Этим условиям отвечают люминесцентные лампы, специальные лампы для выращивания растений, их необходимо только правильно установить.
Следует помнить, что освещенность уменьшается пропорционально удалению освещаемой поверхности от лампы, поэтому в зависимости от мощности лампы растение должно находиться недалеко от источника освещения. Если на листьях появились следы ожогов, то лампы повешены слишком низко; вытянутые стебли и бледные листья свидетельствуют о том, что источник света слишком далеко.
Излишняя освещенность
Несмотря на то что уровень освещенности в наших домах гораздо ниже, чем на улице, комнатные растения могут страдать и от излишней освещенности. Так, неправильно подобранное место для растения может привести к повреждениям из-за излишней освещенности.
Наиболее часто излишняя освещенность в комнатах бывает на окнах южной экспозиции, особенно на высоких этажах. Такие условия освещения подходят только для самых светолюбивых растений (литопсов, пустынных кактусов и еще некоторых других предельно светолюбивых растений), да и то после долгой зимы эти растения необходимо первое время слегка притенять их от прямых солнечных лучей слоем марли или полупрозрачной бумаги. Но даже эти растения будут страдать от сильного перегрева корней, поэтому на жаркие летние месяцы горшки с суккулентами помещают в слой керамзита, чтобы предохранить корни от резкого подъема температуры и быстрого пересыхания кома почвы.
Растениям, предпочитающим яркий, но рассеянный свет, палящие лучи прямого солнца будут наносить повреждения. В первую очередь на поверхности растений появляется ожог: коричневые или серые пятна на листьях. При излишней инсоляции листья растений становятся блеклыми или слишком светлыми, как бы выцветают. В таком случае растения удаляют на достаточное расстояние от окна или притеняют занавеской от попадания прямых солнечных лучей. Для растений этой группы предпочтительны подоконники восточной или западной экспозиции, куда солнечные лучи попадают в начале или в конце дня, когда они не такие палящие.
Тенелюбивые растения (маранты, калатеи, строманты, ктенанты, некоторые папоротники) могут быть повреждены даже кратковременным прямым солнечным освещением, особенно весной. Первым признаком повреждения, вызванного прямой инсоляцией, часто является скручивание пластинки листа вдоль центральной жилки. Затем практически не защищенные от испарения излишков воды листья этих растений теряют тургор, и повреждение становится необратимым. Однако даже после этого поврежденные марантовые выбрасывать не стоит — большинство из них имеет толстые корневища, запасающие питательные вещества. Если эти корневища защитить от высыхания влажным колпаком и поместить в теплое место, то, скорее всего, через несколько недель или месяцев из их спящих почек появятся новые побеги, и растение восстановится. Если же вы сумели захватить процесс повреждения от инсоляции в самом начале, вам следует немедленно убрать растения с прямого солнца, защитить их от излишней сухости воздуха и опрыскать теплой (25–30 ℃) водой.
Для тенелюбивых растений нужно выбрать такое место, где они получали бы достаточный (500–800 люкс), но рассеянный свет. Самое подходящее для них место — около не освещаемого солнцем окна или в стороне от хорошо освещенного окна на расстоянии 1,5–2,5 м.
Резкое увеличение уровня освещенности может также привести к повреждению растения, даже если растение светолюбиво. Если вы переносите растения из более темного места на жгучие лучи солнца, то ожог практически неминуем. Так, даже очень выносливая и светолюбивая сансевьера может получить солнечный ожог (он выглядит как светлые, резко очерченные, постепенно подсыхающие пятна на листьях). Приучайте растение к высокой интенсивности освещения постепенно, особенно весной, когда освещенность возрастает очень резко. Если у вас окно обращено на юг, то в конце марта — начале апреля прямая солнечная инсоляция может повреждать все, даже самые светолюбивые растения. Обратите внимание на растения с нежными, незащищенными кутикулой или опушением листьями. В таких случаях помогает легкая тюлевая занавеска на окне, полупрозрачная бумага, марля, прикрепленная к стеклу.
В первую очередь страдают от прямых солнечных лучей молодые растения, проростки, свежеукорененные черенки. Они должны получать только рассеянный свет.
В солнечную погоду весной и летом поливать комнатные растения следует только ранним утром, а лучше вечером. Полив в светлое время дня, на солнце, практически бесполезен, так как вода испаряется из почвы, не попадая в растения. Кроме того, капли воды, случайно попавшие на листья растения, как крошечные увеличительные стекла фокусируют солнечные лучи и вызывают ожоги. По этой же причине абсолютно недопустимо опрыскивать растения на прямом солнечном свету.
Все эти рекомендации даны в общем для растений, узнать индивидуальные предпочтения по освещенности можно в каталоге комнатных растений. Также на нашем портале работает цветочный форум где вы всегда можете спросить совета, поделиться своим опытом, либо почитать опыт других цветоводов.